Image

"The idea that my theoretical work could one day be used is a very exciting prospect."

- EDDIE SCHOUTE MSc

MSc Courses

Are you an ambitious student with the desire to make a contribution to this exciting field of science? Join us in creating the quantum future, together with world-leading scientists working in state-of-the-art facilities.

QuTech Academy offers master courses at TU Delft for students with a background in Applied Physics, Electrical Engineering, Mathematics, Computer Science, Computer Engineering and Embedded Systems.

The Quantum Information Science and Technology (QIST) is a multidisciplinary Quantum-oriented master programme. All QuTech Academy courses are featured as core or elective courses of the QIST programme.

Apart from the QIST programme, you can follow QuTech Academy courses after you enrol in one of the selected master programmes in the Applied Sciences (AS) or Electrical Engineering, Mathematics and Computer Science (EEMCS) faculty. Please take into account that the quarters of the elective space of the selected MSc programmes might not be compatible with the quarter the QuTech Academy courses are given.

You can take QuTech Academy courses in the elective space of the following programmes:

Fundamentals of Quantum Information
by Leo DiCarlo and Miriam Blaauboer

In this class, we will teach you the fundamentals of qubits, quantum gates and measurements. You will also learn about quantum entanglement, as well as quantum teleportation. You will learn how properties of quantum information can be applied to construct some of the most well-known quantum algorithms, and the basics of quantum error correction.
Course code: QIST4310 + AP3421-PR
Course period:
Q2 + Q3
ECTS: 4 + 2

Read more

Quantum Communication and Cryptography
by Stephanie Wehner

Having learned the fundamentals, you will now discover how quantum communication can be used to solve cryptographic problems. We will explain some of the most well-known quantum cryptographic protocols, such as quantum key distribution. We will also teach you general quantum cryptographic techniques that can be used to design and analyse quantum protocols at large.
Course code: CS4090
Course period:
Q3
ECTS: 4

Read more

Quantum Computing Architecture by Fabio Sebastiano and Sebastian Feld

To make a quantum computer and quantum internet work, we also need classical hardware and software to control and instruct the quantum device. This course introduces the overall system of a quantum computer, focusing on the classical hardware and software infrastructure required to build a quantum computer together with the quantum hardware.
Course code: QIST4400
Course period:
Q3
ECTS: 5

Read more

Quantum Hardware 1 – Theoretical Concepts
by
Johannes Borregaard and Christian Andersen

Quantum hardware is what turns the novel concepts of quantum computation and communication into reality. The key challenge is to control, couple, transmit and read out the fragile state of quantum systems with great precision, and in a technologically viable way. Quantum Hardware I is focused on teaching theoretical physics concepts for understanding this Hamiltonian engineering challenge in various quantum hardware platforms. The material will be taught using example systems such as spin qubits (quantum dots or NV centers), superconducting, Majorana or trapped-ion qubits.
Course code: AP3432
Course period:
Q3
ECTS: 4

Read more

Quantum Hardware 2 – Experimental State of the Art
by Ronald Hanson and Lieven Vandersypen

While Quantum Hardware I is focused on teaching underpinning theoretical tools, Quantum Hardware II will give you an overview of the experimental state-of-the-art. You will learn about the most promising approaches for realizing quantum hardware, and critically assess the strengths and weaknesses of each approach. You will also get insight in the conceptual similarities and differences between the various technologies. Specifically, the course will cover general concepts and considerations of qubit hardware, trapped ions, superconducting circuits, quantum dots, impurities, cold atoms, photonic circuits, single-photon sources, single-photon detectors and quantum repeaters.
Course code: AP3442
Course period:
Q4
ECTS: 4

Read more

Special Topics in Quantum Technology
by Barbara Terhal

The content of this course changes per year and per teacher. The goal of the focus course is to provide MSc students and early PhD students more in-depth knowledge and/or tools on particular quantum hardware as pursued at QuTech.

Course description for 2022/2023 “Quantum Error Correction”

We discuss the ideas behind quantum error correction and fault-tolerance such as the threshold theorem, code concatenation, stabiliser and topological codes, fault-tolerant gate constructions, decoding and bosonic codes. There will some hands-on Python exercises of decoding.

Course code: AP3452
Course period:
Q4
ECTS: 4

Read more

 

Go to Thesis Projects

Back to QuTech