Course "Electronics for Physicists"

Lectures: Building 20 (Aula), Lecture Hall D [8u45-12u45]

Labs: Building 22 (TNW), Room A151 [13u45-17u30]

Lect 1. Tue 4 Nov (morning)	1: Introduction to electronics <u>Goal</u> : send, receive, process information via voltage/current/charge/flux in circuits <u>Basic components</u> : Resistor, capacitor, inductor, diode, transistor, opamp. <u>Concepts</u> : feedback, circuit models and limitations.
Lecture + demo	Practical basics for the afternoon lab: breadboards, soldering, equipment
Lab 1. Tue 4 Nov (afternoon) Lab practice	1: Learn how to solder (even small surface mount components on a PCB) Build a charge detector, thermocouple amplifier, curve tracer, liquid level meter Use resonant LC-circuits to transmit/receive information
Lect 2. Tue 11 Nov (morning) Lecture + demo	2: Integrated circuits and design tools, analog and digital <u>Circuit simulation</u> software tools (spice) and model-limitations. <u>Prototyping and printed circuit boards</u> : design, construction and build-limitations <u>Digital electronics</u> ; logic functions, microprocessors, DSP, FPGA, development platforms
Lab 2. Tue 11 Nov (afternoon) Lab practice	2: Circuit simulation software: Simulate, build and measure a filter, see limitations. Make a stand-alone laser controller system using a microcontroller. Applications of development kits and FPGA/microcontrollerboards.
Lect 3. Tue 18 Nov (morning) Lecture + demo	3: Signals, noise, interference and shielding <u>Description of signals</u> , waveforms, rise time, bandwidth, slew rate, modulation <u>Noise and interference</u> , noise sources, interference sources, signal to noise ratio <u>Shielding</u> , cables, ground loop, Faraday cage
Lab 3. Tue 18 Nov	3: Search and identify interference with simple E/H probes
(afternoon)	Measure the effect of ground currents on signals in cables
(diternoon)	Build an optical link, identify interference, measure the rise time/bandwidth
	Determine signal to noise, make a resonant circuit.
Lab practice	Shielding electric and magnetic fields, impedance of grounding wires
Lab practice	4: RF and microwaves
(morning)	<u>Transmission lines:</u> introduction, models, standing waves, loss
1	Scattering parameters: RF transmission/reflection in systems, cables and on PCB
Lecture + demo	<u>RF components and specifications</u> : mixers, noise temperature, cryogenic application
Lab 4. Tue 25 Nov	4: Measure transmission line behavior in cables
(afternoon)	RF-applications of mixers: phase measurement, frequency doubler, demodulation
	Examine waveguide transmission versus coax lines
Lab practice	Application: make a transmission line pulser
Lect 5. Tue 02 Dec	5: Measurement: sensors, front-end and techniques
(morning)	Sensors/transducers sensors, actuators, components (photodetectors), circuits
	Front-end amplifiers: instrumentation amp, IV-converter, iso-amp, rf (cryo) amplifier
	Define amplifier specs for a given measurement goal and test this.
	Filters: types, order, limitations and applications.
	Measurement techniques: bridge circuits, resonant circuits homodyning/heterodyning, time
Lecture + demo	domain and frequency domain reflectometry
Lab 5. Tue 02 Dec	5: Build a capacitive bridge position sensor. Homodyning/heterodyning using mixer
(afternoon)	Build a reflectometry setup to detect cable and connector mismatch reflections.
	Use a Vector network Analyzer to read resonant $\frac{1}{4}\lambda$ line, measure absorber effects
Lab practice	Build and measure interference rejection filters
Lect 6. Tue 09 Dec	6: Measurement equipment and setup
(morning)	<u>A to D conversion</u> : specifications, limitations, use of subsampling and oversampling
(Equipment: concepts, reading the spec sheet, power supply, dc-measurements,
	Lock-in amp, DAQ-cards, Oscilloscope, spectrum/network analyzer, TDR,
	function/pulse/arbitrary/microwave generator, frequency vs time domain
Lecture + demo	Controlling a measurement setup
Lab 6. Tue 09 Dec (afternoon)	6: Use a real lock-in amplifier, use network/spectrum analyzer on resonant structures Digital oscilloscope: functions, tools, recognize sampling aliasing problems.
Lab practice	Build and program a basic ultra-low budget DAQ system
-	