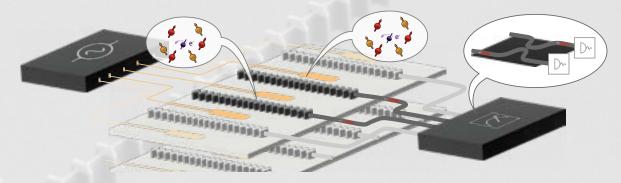

Open positions for master thesis project:

Integration, creation and control of colour centres in nanophotonic devices for scalable quantum


networks

Taminiau Lab, QuTech

Using colour centres in solid state materials, like diamond and Silicon Carbide, allow you to entangle quantum processors using photonic links on chip and off chip [1]. This paves the way for distributed quantum computing and the foundation of a quantum network. By integrating these colour centres in nanophotonic devices you can improve the optical properties of the qubits. This improves the entanglement rate and works towards a scalable platform for quantum networks. Silicon Carbide is one of the solid state platforms for colour which allows centre integration in nanophotonic structures.

Colour centres in 4H-Silicon Carbide have shown themselves to be an interesting candidate for scalable quantum applications. Especially due to their **outstanding spin-optical** properties [2,3] and the successful integration of defects in nanophotonic structures [4,5]

Project Directions

Interested? Contact: <u>Laurens Feije</u> or <u>Jasper Hu</u> In the SiC team of the Taminiau lab, there are three possible routes to explore. All these topics offer you the **flexibility** and **freedom** to design your own project, aligning it with your interests.

- 1. **Fabricate** and **integrate** qubits in **Photonic Crystal Cavities** in 4H-SiC.
- 2. **Simulating** a hetronuclear crystal and work towards electron and nuclear **spin control**.
 - 3. Establish **experimental** capability of fiber coupling at **cryogenic temperatures**.

M. Pompili, et. al., Science 372, 259–264 (2021)
Nagy, R. et al. Nature Communications. 10.1 (2019): 1-8.
Widmann, M. et al. Nature Materials. 14, 164–168 (2015).
Babin, C, et al. Nature Materials. 21, 67–73 (2022).
Lukin, D.M. et al. Nature Photonics. 14, 330–334 (2020).